
TECHNOLOGY

All graphics presented here is courtesy of MADFINGER GAMES:

GRAY ZONE: WARFARE

FOR THE NEXT GENERATION OF OPEN WORLD
GAMES

What is SKALLA ?

• SKALLA is a software for the creation of massive virtual worlds. Utilizing the vector based
modeling primitives, augmented by the real-time procedural generation.

• It adopts the powerful node-graph based non destructive workflow pipeline.

• It allows multiple users to work simultaneously on a single world in real-time.

• It has tight integration with Unreal Engine 5, where edits of the world are immediately
reflected in the engine.

Typical view of the SKALLA viewport

Vector based primitives for part of world

Typical UE view

Terrain representation
• The terrain is a heightfield based and it utilizes the Virtual Heightfield Mesh (VHM) for the

rendering.

• All the terrain data (elevation, splat mask, water height, water flow direction, …) are
represented as a runtime virtual textures allowing for extreme resolutions while keeping
fixed memory budget.

• In the current project we use elevation data resolution of 5242882 for 32x32 km terrain
giving us 6.1 cm details.

• The terrain water is also VHM, but it is rendered only in the tiles containing the water.

Terrain texturing
• SKALLA implements state of the art terrain texturing system.

• The terrain can use up to 127 textures (grass, sand, rock, soil, …). Number of textures
used does not affect the performance. They are kept in the texture array, so they must fit
into the GPU memory.

• The terrain material features.

• Per pixel displacement mapping with soft shadows.

• Automatic tri-planar mapping – textures on cliffs are not stretched.

• Support for procedural wetness.

• Height based blending between different texture types.

• Stochastic texturing to hide texture tiling.

Per pixel displacement mapping in action

Wetness & tri-planar in action

Height based blending in action

Terrain objects
• The terrain is populated by objects based on biomes, where biome defines the rules for

spawning of specific models.

• Importing objects placed in UE to SKALLA and than using our system to render them is
also supported.

• On Unreal Engine side, we have implemented custom solution for rendering massive
amounts of objects.

• Also, we support fast collision queries with procedurally placed objects through custom
API, which can be used by game code.

Terrain objects
• Terrain objects are organized into layers based on object size, which puts limits on their

density and max view distance :

• Small (grass, flowers, small rocks, …), max vis dist ~200 m

• Medium (bushes, large rocks, …), max vis dist ~800 m

• Large (most trees, big rocks, …), max vis dist ~3 km

• Far (this is automatically created layer for rendering trees into “infinity”)

Objects. Lots of objects.

Vegetation rendering & wind
• For rendering realistic vegetation, we have created preprocessor, which takes input

model and automatically generates skeleton and auxiliary data (baked into textures) for
wind simulation.

• Further, we automatically generate simplified shadow casting proxy models and
precompute medium-freq ambient occlusion.

• Billboard based LODs are also automatically generated.

• Finally, we also pre-generate 32bit low resolution texture which is used to generate
correct self-shadowing for billboard trees over entire view range.

• We support global simulated wind as well as local wind sources like helicopters,
explosions etc.

Rendering improvements and
optimizations

• We have implemented several improvements and optimizations for rendering inside
Unreal Engine 5:

• Terrain heightfield soft shadows over entire viewing range (shadows cast by terrain onto
everything else).

• Custom shadows for foliage – using non-linear warping to get hires dynamic shadows
even with single cascade (much better performance) + ‘FAR’ low resolution static
shadows covering ~2 km view range

• World Ambient Occlusion – custom solution for providing consistent AO over entire
world.

• Z-Prepass optimizations for foliage rendering.

Terrain soft shadows

World Ambient Occlusion

Game code support

• We support all the features that are necessary to actually build game with our tech:

• From terrain and objects, we automatically generate collisions and navmesh.

• Also, we support fast queries for collision detection to be used by AI as well as querying
terrain attributes (elevation, biome, water height, water velocity, …) at specific world
position.

• It is possible to spawn any UE actors from SKALLA, however in much smaller quantities
due to Unreal Engine overhead. It can be used for population of biomes by sounds,
particle FX etc.

• Finally, it is possible to affect wind by local ‘sources’ using supplied API.

World partition, streaming etc.

• Good news: there is no world partition and streaming necessary for SKALLA world.
World description data are very small and everything else is generated from it at
runtime.

• Real-time generation of data can be seen as substitute for (inferior) concept of
precomputation (of large data) and streaming

• Because there is no precomputation, iterating on world is very fast even for extremely
large and detailed worlds. Once you taste it, there is no going back :-)

• Also, for SKALLA data, there is zero loading time. It only depends on performance of
your machine. The 32x32 km detailed world of Gray Zone: Warfare is rebuild
completely from scratch in less than 3 seconds on 7950x CPU.

Terrain modeling
• We have researched & experimented with many techniques for terrain synthesis

(https://youtu.be/_n7iwPLbSaM).

• However what finally works best for us is ‘bashing’ of vector based shapes and curves
which in turn produce ‘distance fields’ which are procedurally enhanced and composited
into heightfield.

• Shapes and curves control terrain elevation as well as biomes, texture synthesis, water
etc.

• Because of vector based source data, output is resolution independent and it is also
crucial for non-destructive workflow. Any aspect of terrain can be changed at any time.

https://youtu.be/_n7iwPLbSaM

Multi-user collaboration

• HIVE is simple, yet powerful multi-user collaboration system that is integrated in SKALLA.

• It uses concept of per-node ownership (in nodes graph), where each node is owned by
exactly 1 user. Node can represent part of the world spatially (certain region on map) or
semantically (certain component of world – ie. rivers). Or it can be combination of both.

• It uses local server to store data and serve it to users.

• Because data representing world are quite small (few MB compressed), passing data
between server and clients is very quick.

Limitations

• SKALLA placed objects does not support Unreal Virtual Shadow Maps. We don’t insert
terrain objects into UE ‘GPU scene’ because of massive performance overhead. Also, we
found out, that using VSM with high density foliage is currently no-go for performance,
due to high resolution shadow maps combined with high overdraw of alpha keyed foliage.

• Also, because of our objects not being inserted into GPU scene, they are not visible to
Lumen software / hardware ray tracing and only use information available in screen space.
We compensated for this by introducing custom ‘WorldAO’ subsystem, which combined
with Lumen screen space based tracing gives great results.

	Slide 1
	Slide 2: What is SKALLA ?
	Slide 3: Typical view of the SKALLA viewport
	Slide 4: Vector based primitives for part of world
	Slide 5: Typical UE view
	Slide 6: Terrain representation
	Slide 7: Terrain texturing
	Slide 8: Per pixel displacement mapping in action
	Slide 9: Wetness & tri-planar in action
	Slide 10: Height based blending in action
	Slide 11: Terrain objects
	Slide 12: Terrain objects
	Slide 13: Objects. Lots of objects.
	Slide 14: Vegetation rendering & wind
	Slide 15: Rendering improvements and optimizations
	Slide 16: Terrain soft shadows
	Slide 17: World Ambient Occlusion
	Slide 18: Game code support
	Slide 19: World partition, streaming etc.
	Slide 20: Terrain modeling
	Slide 21: Multi-user collaboration
	Slide 22: Limitations

